Jupyter Notebook console
Import modules
Load data
Data at a glance
describe: statisical properties
info: data properties - structure and data types
shape: rows and columns
Numerical analysis and visualisation
brown
red
purple
pink
orange
olive
blue
cyan
green
gray
Categorical analysis and visualisation
Correlation between columns
Column wrangling
Add and calculate a new column
Modify existing column
conn = sqlite3.connect('data/sakila.db') df = pd.read_sql(''' SELECT rental.rental_id, rental.rental_date, rental.return_date, customer.last_name AS customer_lastname, store.store_id, city.city AS rental_store_city, film.title AS film_title, film.rental_duration AS film_rental_duration, film.rental_rate AS film_rental_rate, film.replacement_cost AS film_replacement_cost, film.rating AS film_rating FROM rental INNER JOIN customer ON rental.customer_id == customer.customer_id INNER JOIN inventory ON rental.inventory_id == inventory.inventory_id INNER JOIN store ON inventory.store_id == store.store_id INNER JOIN address ON store.address_id == address.address_id INNER JOIN city ON address.city_id == city.city_id INNER JOIN film ON inventory.film_id == film.film_id ; ''', conn, index_col='rental_id', parse_dates=['rental_date', 'return_date'])